• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Class Notes

Free Class Notes & Study Material

  • Class 1-5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • NCERT SOL
  • Ref Books
Home » NCERT Solutions » Class 11 » Maths » NCERT Solutions for Chapter 7, Miscellaneous Exercise, Class 11, Maths

NCERT Solutions for Chapter 7, Miscellaneous Exercise, Class 11, Maths

Last Updated on September 14, 2023 By Mrs Shilpi Nagpal

Miscellaneous Exercise
Binomial Theorem
Question and Answers
Class 11 – Maths

Class Class 11
Subject Mathematics
Chapter Name Binomial Theorem
Chapter No. Chapter 7
Exercise Miscellaneous Exercise
Category Class 11 Maths NCERT Solutions

Question 1 If a and b are distinct integers, prove that a – b is a factor of a n – b n , whenever n is a positive integer.

[Hint write an = (a – b + b) n and expand]

Answers

a = a − b + b
So, an = [a − b +b]n
= [(a − b) + b]n
= nC0 (a − b)n + nC1 (a − b)n−1b1 + nC2 (a − b)n−2b2 + …….+ nCn−1 (a − b)bn−1 + nCn (bn)
⇒ an − bn = (a − b)n + nC1 (a − b)n−1b + nC2 (a − b)n−2b2 + …….+ nCn−1 (a − b)bn−1
= (a − b) [(a − b)n−1 + nC1 (a − b)n−2b + nC2 (a − b)n−3b2 + ……+ nCn−1 bn−1] = (a – b)[an integer] ⇒ an – bn is divisible by (a – b)

Question 2 Evaluate (√3 + √2)6 – ( √3 – √2 )6

Answers 

( √3​ + √2​)6−(√3​−√2​)6
= ((√3+ √2​)2 − (√3​−√2​)2)3 + 3 (√3​+√2​)2( √3​−√2​)2 ((√3​+√2​)2−(√3​+√2​)2))
= (4√6​)3 + 4√6​(5+2√6​) (5−2√6​)
= 384√6​+4√6
= 388√6​

Question 3 Find the value of

Miscellaneous Exercise , Question 3

Answers

Miscellaneous Exercise , Answer-3, Chapter-7

Question 4 Find an approximation of (0.99)5 using the first three terms of its expansion

Answer 0.99 can be written as
0.99 = 1 – 0.01
Now, by applying the binomial theorem, we get
(o. 99)5 = (1 – 0.01)5
= 5C0 (1)5 – 5C1 (1)4 (0.01) + 5C2 (1)3 (0.01)2
= 1 – 5 (0.01) + 10 (0.01)2
= 1 – 0.05 + 0.001
= 0.951

Question 5 Expand using Binomial Theorem

Answer Using the binomial theorem, the given expression can be expanded as

Miscellaneous Exercise , Answer-5(i) Chapter-7

Miscellaneous Exercise , Answer-5(ii) Chapter-7 

Question 6 Find the expansion of (3x 2 – 2ax + 3a 2 ) 3 using binomial theorem.

​Answer (a + b)3 = a3 + 3a2b + 3ab2 + b3Putting a = 3x2
b = -a (2x-3a), we get
[3x2 + (-a (2x-3a))]3 = (3x2)3+3(3x2)2(-a (2x-3a)) + 3(3x2) (-a (2x-3a))2 + (-a (2x-3a))3
= 27x6 – 27ax4 (2x-3a) + 9a2x2 (2x-3a)2 – a3(2x-3a)3
= 27x6 – 54ax5 + 81a2x4 + 9a2x2 (4x2-12ax+9a2) – a3 [(2x)3 – (3a)3 – 3(2x)2(3a) + 3(2x)(3a)2] = 27x6 – 54ax5 + 81a2x4 + 36a2x4 – 108a3x3 + 81a4x2 – 8a3x3 + 27a6 + 36a4x2 – 54a5x
= 27x6 – 54ax5+ 117a2x4 – 116a3x3 + 117a4x2 – 54a5x + 27a6
Thus, (3x2 – 2ax + 3a2)3
= 27x6 – 54ax5+ 117a2x4 – 116a3x3 + 117a4x2 – 54a5x + 27a6

Filed Under: Class 11, Maths, NCERT Solutions

About Mrs Shilpi Nagpal

Author of this website, Mrs. Shilpi Nagpal is MSc (Hons, Chemistry) and BSc (Hons, Chemistry) from Delhi University, B.Ed. (I. P. University) and has many years of experience in teaching. She has started this educational website with the mindset of spreading free education to everyone.

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Facebook
  • Pinterest
  • Twitter
  • YouTube

CATEGORIES

  • —— Class 6 Notes ——
  • —— Class 7 Notes ——
  • —— Class 8 Notes ——
  • —— Class 9 Notes ——
  • —— Class 10 Notes ——
  • —— NCERT Solutions ——

© 2016 - 2025 · Disclaimer · Privacy Policy · About Us · Contact Us