• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Class Notes

Free Class Notes & Study Material

  • Class 1-5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • NCERT SOL
  • Ref Books
Home » NCERT Solutions » Class 11 » Maths » NCERT Solutions for Exercise 7.1, Class 11, Maths

NCERT Solutions for Exercise 7.1, Class 11, Maths

Last Updated on June 27, 2024 By Mrs Shilpi Nagpal

Exercise 7.1
Binomial Theorem
Question and Answers
Class 11 – Maths

Class Class 11
Subject Mathematics
Chapter Name Binomial Theorem
Chapter No. Chapter 7
Exercise Exercise 7.1
Category Class 11 Maths NCERT Solutions

Expand each of the expressions in Exercises 1 to 5.

(1) (1–2x) 5

(1 – 2x)5 = 5Co (1)5 – 5C1 (1)4 (2x) + 5C2 (1)3 (2x)2 – 5C3 (1)2 (2x)3 + 5C4 (1)1 (2x)4 – 5C5 (2x)5
= 1 – 5 (2x) + 10 (4x)2 – 10 (8x3) + 5 ( 16 x4) – (32 x5)
= 1 – 10x + 40x2 – 80x3 + 80x4– 32x5

(2) 

Exercise 7.1 , Question 2

Exercise 7.1 , Answer 2

(3) (2x – 3)6

=6C0(2x)6 − 6C1(2x)5(3) + 6C2(2x)4(3)2 − 6C3(2x)3(3)3 + 6C4(2x)2(3)4 − 6C5(2x(3)5 + 6C6(3)6
=64x6 − 6(32x5)(3) + 15(16x4)(9) − 20(8X3)(27) + 15(4x2)(81) − 6(2x)(243) + 729
=64x6 − 576x5 + 2160x4− 4320x3 + 4860x2 − 2916 x + 729

(4)

Exercise 7.1 , Question 4

Exercise 7.1 , answer 4

(5) 

Exercise 7.1 , Question 5

Exercise 7.1 , Answer 5

Using binomial theorem, evaluate each of the following:

(6) (96)3

Answer

The given question can be written as 96 = 100 – 4
(96)3 = (100 – 4)3
= 3C0 (100)3 – 3C1 (100)2 (4) – 3C2 (100) (4)2– 3C3 (4)3
= (100)3 – 3 (100)2 (4) + 3 (100) (4)2 – (4)3
= 1000000 – 120000 + 4800 – 64
= 884736

(7) (102)5

Answer

The given question can be written as 102 = 100 + 2
(102)5 = (100 + 2)5
= 5C0 (100)5 + 5C1 (100)4 (2) + 5C2 (100)3 (2)2 + 5C3 (100)2 (2)3 + 5C4 (100) (2)4 + 5C5 (2)5
= (100)5 + 5 (100)4 (2) + 10 (100)3 (2)2 + 5 (100) (2)3 + 5 (100) (2)4 + (2)5
= 1000000000 + 1000000000 + 40000000 + 80000 + 8000 + 32
= 11040808032

(8) (101)4

Answer

The given question can be written as 101 = 100 + 1
(101)4 = (100 + 1)4
= 4C0 (100)4 + 4C1 (100)3 (1) + 4C2 (100)2 (1)2 + 4C3 (100) (1)3 + 4C4 (1)4
= (100)4 + 4 (100)3 + 6 (100)2 + 4 (100) + (1)4
= 100000000 + 400000 + 60000 + 400 + 1
= 104060401

(9) (99)5

Answer
The given question can be written as 99 = 100 -1
(99)5 = (100 – 1)5
= 5C0 (100)5 – 5C1 (100)4 (1) + 5C2 (100)3 (1)2 – 5C3 (100)2 (1)3 + 5C4 (100) (1)4 – 5C5 (1)5
= (100)5 – 5 (100)4 + 10 (100)3 – 10 (100)2 + 5 (100) – 1
= 1000000000 – 5000000000 + 10000000 – 100000 + 500 – 1
= 9509900499

(10) Using Binomial Theorem, indicate which number is larger (1.1)10000 or 1000.

Answer

By splitting the given 1.1 and then applying the binomial theorem,
the first few terms of (1.1)10000 can be obtained as
(1.1)10000 = (1 + 0.1)10000
= (1 + 0.1)10000 C1 (1.1) + other positive terms
= 1 + 10000 × 1.1 + other positive terms
= 1 + 11000 + other positive terms
> 1000
(1.1)10000 > 1000

(11) Find (a+b)4 – (a-b)4. Evaluate

Exercise 7.1, Question 11

Answer

Using the binomial theorem, the expression (a + b)4 and (a – b)4 can be expanded
(a + b)4 = 4C0 a4 + 4C1 a3 b + 4C2 a2 b2 + 4C3 a b3 + 4C4 b4
(a – b)4 = 4C0 a4 – 4C1 a3 b + 4C2 a2 b2 – 4C3 a b3 + 4C4 b4
Now, (a + b)4 – (a – b)4 = 4C0 a4 + 4C1 a3 b + 4C2 a2 b2 + 4C3 a b3 + 4C4 b4 – [4C0 a4 – 4C1 a3 b + 4C2 a2 b2 – 4C3 a b3 + 4C4 b4] = 2 (4C1 a3 b + 4C3 a b3)
= 2 (4a3 b + 4ab3)
= 8ab (a2 + b2)
Now, by substituting a = √3 and b = √2, we get
(√3 + √2)4 – (√3 – √2)4 = 8 (√3) (√2) {(√3)2 + (√2)2}
= 8 (√6) (3 + 2)
= 40 √6

(12) Using the binomial theorem, the expressions (x + 1)6 and (x – 1)6 can be expressed as

Answer
(x + 1)6 = 6C0 x6 + 6C1 x5 + 6C2 x4 + 6C3 x3 + 6C4 x2 + 6C5 x + 6C6
(x – 1)6 = 6C0 x6 – 6C1 x5 + 6C2 x4 – 6C3 x3 + 6C4 x2 – 6C5 x + 6C6
Now, (x + 1)6 – (x – 1)6 = 6C0 x6 + 6C1 x5 + 6C2 x4 + 6C3 x3 + 6C4 x2 + 6C5 x + 6C6
– [6C0 x6 – 6C1 x5 + 6C2 x4 – 6C3 x3 + 6C4 x2 – 6C5 x + 6C6]
= 2 [6C0 x6 + 6C2 x4 + 6C4 x2 + 6C6] = 2 [x6 + 15x4 + 15x2 + 1] Now, by substituting x = √2, we get
(√2 + 1)6 – (√2 – 1)6 = 2 [(√2)6 + 15(√2)4 + 15(√2)2 + 1] = 2 (8 + 15 × 4 + 15 × 2 + 1)
= 2 (8 + 60 + 30 + 1)
= 2 (99)
= 198

(13) Find (x + 1)6 + (x – 1)6. Hence, or otherwise, evaluate 

Exercise 7.1 , Question 12

Answer

(x + 1)6 = 6C0 x6 + 6C1 x5 + 6C2 x4 + 6C3 x3 + 6C4 x2 + 6C5 x + 6C6
(x – 1)6 = 6C0 x6 – 6C1 x5 + 6C2 x4 – 6C3 x3 + 6C4 x2 – 6C5 x + 6C6
Now, (x + 1)6 – (x – 1)6 = 6C0 x6 + 6C1 x5 + 6C2 x4 + 6C3 x3 + 6C4 x2 + 6C5 x + 6C6
– [6C0 x6 – 6C1 x5 + 6C2 x4 – 6C3 x3 + 6C4 x2 – 6C5 x + 6C6]
= 2 [6C0 x6 + 6C2 x4 + 6C4 x2 + 6C6] = 2 [x6 + 15x4 + 15x2 + 1] Now, by substituting x = √2, we get
(√2 + 1)6 – (√2 – 1)6 = 2 [(√2)6 + 15(√2)4 + 15(√2)2 + 1] = 2 (8 + 15 × 4 + 15 × 2 + 1)
= 2 (8 + 60 + 30 + 1)
= 2 (99)
= 198

(14) Show that 9n+1 – 8n – 9 is divisible by 64, whenever n is a positive integer.

Answer

In order to show that 9n+1 – 8n – 9 is divisible by 64, it has to be shown that 9n+1 – 8n – 9 = 64 k,
where k is some natural number
Using the binomial theorem,
(1 + a)m = mC0 + mC1 a + mC2 a2 + …. + m C m am
For a = 8 and m = n + 1, we get
(1 + 8)n+1 = n+1C0 + n+1C1 (8) + n+1C2 (8)2 + …. + n+1 C n+1 (8)n+1
9n+1 = 1 + (n + 1) 8 + 82 [n+1C2 + n+1C3 (8) + …. + n+1 C n+1 (8)n-1] 9n+1 = 9 + 8n + 64 [n+1C2 + n+1C3 (8) + …. + n+1 C n+1 (8)n-1] 9n+1 – 8n – 9 = 64 k
Where k = [n+1C2 + n+1C3 (8) + …. + n+1 C n+1 (8)n-1] is a natural number
Thus, 9n+1 – 8n – 9 is divisible by 64 whenever n is a positive integer.
Hence, the proof.

(15) Prove that

Answer

Exercise 7.1 , Question 14

15) 

Exercise 7.1 , Answer 14

Filed Under: Class 11, Maths, NCERT Solutions

About Mrs Shilpi Nagpal

Author of this website, Mrs. Shilpi Nagpal is MSc (Hons, Chemistry) and BSc (Hons, Chemistry) from Delhi University, B.Ed. (I. P. University) and has many years of experience in teaching. She has started this educational website with the mindset of spreading free education to everyone.

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Facebook
  • Pinterest
  • Twitter
  • YouTube

CATEGORIES

  • —— Class 6 Notes ——
  • —— Class 7 Notes ——
  • —— Class 8 Notes ——
  • —— Class 9 Notes ——
  • —— Class 10 Notes ——
  • —— NCERT Solutions ——

© 2016 - 2025 · Disclaimer · Privacy Policy · About Us · Contact Us