• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Class Notes

Free Class Notes & Study Material

  • Class 1-5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • NCERT SOL
  • Ref Books
Home » NCERT Solutions » Class 11 » Maths » NCERT Solutions for Exercise 2.2, Class 11, Maths

NCERT Solutions for Exercise 2.2, Class 11, Maths

Last Updated on July 11, 2023 By Mrs Shilpi Nagpal

Exercise 2.2 Relations and Functions
Question and Answers
Class 11 – Maths

Class Class 11
Subject Mathematics
Chapter Name Relations and Functions
Chapter No. Chapter 2
Exercise Exercise 2.2
Category Class 11 Maths NCERT Solutions

Question 1 Let A = {1, 2, 3,…,14}. Define a relation R from A to A by R = {(x, y) : 3x – y = 0, where x, y ∈ A}. Write down its domain, codomain and range.

Answer The relation R from A to A is given as:

R = {(x, y): 3x – y = 0, where x, y ∈ A}

= {(x, y): 3x = y, where x, y ∈ A}

R = {(1, 3), (2, 6), (3, 9), (4, 12)}

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of R = {1, 2, 3, 4}

The whole set A is the codomain of the relation R.

Hence, Codomain of R = A = {1, 2, 3, …, 14}

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of R = {3, 6, 9, 12}

Question 2 Define a relation R on the set N of natural numbers by R = {(x, y) : y = x + 5, x is a natural number less than 4; x, y ∈N}. Depict this relationship using roster form. Write down the domain and the range.

Answer R = {(x, y): y = x + 5, x is a natural number less than 4, x, y ∈ N}

The natural numbers less than 4 are 1, 2, and 3.

So, R = {(1, 6), (2, 7), (3, 8)}

The domain of R is the set of all first elements of the ordered pairs in the relation.

Hence, Domain of R = {1, 2, 3}

The range of R is the set of all second elements of the ordered pairs in the relation.

Hence, Range of R = {6, 7, 8}

Question 3 A = {1, 2, 3, 5} and B = {4, 6, 9}. Define a relation R from A to B by R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}. Write R in roster form.

Answer A = {1, 2, 3, 5} and B = {4, 6, 9}

The relation from A to B is given as

R = {(x, y): the difference between x and y is odd; x ∈ A, y ∈ B}

R = {(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)}

Question 4 The Fig 2.7 shows a relationship between the sets P and Q. Write this relation

(i) in set-builder form

(ii) roster form.

What is its domain and range?

Answer P = {5, 6, 7}, Q = {3, 4, 5}

The relation between P and Q:

(i) Set-builder form

R = {(x, y): y = x – 2; x ∈ P} or R = {(x, y): y = x – 2 for x = 5, 6, 7}

(ii) Roster form

R = {(5, 3), (6, 4), (7, 5)}

Domain of R = {5, 6, 7}

Range of R = {3, 4, 5}

Question 5  Let A = {1, 2, 3, 4, 6}. Let R be the relation on A defined by

{(a, b): a , b ∈A, b is exactly divisible by a}.

(i) Write R in roster form

(ii) Find the domain of R

(iii) Find the range of R.

Answer A = {1, 2, 3, 4, 6} and relation R = {(a, b): a, b ∈ A, b is exactly divisible by a}

(i) R = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)}

(ii) Domain of R = {1, 2, 3, 4, 6}

(iii) Range of R = {1, 2, 3, 4, 6}

Question 6 Determine the domain and range of the relation R defined by

R = {(x, x + 5) : x ∈ {0, 1, 2, 3, 4, 5}}.

Answer Relation R = {(x, x + 5): x ∈ {0, 1, 2, 3, 4, 5}}

R = {(0, 5), (1, 6), (2, 7), (3, 8), (4, 9), (5, 10)}

Domain of R = {0, 1, 2, 3, 4, 5} and,

Range of R = {5, 6, 7, 8, 9, 10}

Question 7 Write the relation R = {(x, x3 ) : x is a prime number less than 10} in roster form.

Answer Relation R = {(x, x3): x is a prime number less than 10}

The prime numbers less than 10 are 2, 3, 5, and 7.

∴ R = {(2, 8), (3, 27), (5, 125), (7, 343)

Question 8 Let A = {x, y, z} and B = {1, 2}. Find the number of relations from A to B.

Answer A = {x, y, z} and B = {1, 2}

A × B = {(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)}

As n(A × B) = 6, the number of subsets of A × B will be 26.

Thus, the number of relations from A to B is 26.

Question 9 Let R be the relation on Z defined by R = {(a,b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.

Answer Relation R = {(a, b): a, b ∈ Z, a – b is an integer}

We know that the difference between any two integers is always an integer.

∴ Domain of R = Z and Range of R = Z

Filed Under: Class 11, Maths, NCERT Solutions

About Mrs Shilpi Nagpal

Author of this website, Mrs. Shilpi Nagpal is MSc (Hons, Chemistry) and BSc (Hons, Chemistry) from Delhi University, B.Ed. (I. P. University) and has many years of experience in teaching. She has started this educational website with the mindset of spreading free education to everyone.

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Facebook
  • Pinterest
  • Twitter
  • YouTube

CATEGORIES

  • —— Class 6 Notes ——
  • —— Class 7 Notes ——
  • —— Class 8 Notes ——
  • —— Class 9 Notes ——
  • —— Class 10 Notes ——
  • —— NCERT Solutions ——

© 2016 - 2025 · Disclaimer · Privacy Policy · About Us · Contact Us