• Skip to main content
  • Skip to secondary menu
  • Skip to primary sidebar

Class Notes

Free Class Notes & Study Material

  • Class 1-5
  • Class 6
  • Class 7
  • Class 8
  • Class 9
  • Class 10
  • Class 11
  • Class 12
  • NCERT SOL
  • Ref Books
Home » NCERT Solutions » Class 11 » Maths » NCERT Solutions for Exercise 1.4, Class 11, Maths

NCERT Solutions for Exercise 1.4, Class 11, Maths

Last Updated on July 11, 2023 By Mrs Shilpi Nagpal

Exercise 1.4 Sets
Question and Answers
Class 11 – Maths

Class Class 11
Subject Mathematics
Chapter Name Sets
Chapter No. Chapter 1
Exercise Exercise 1.4
Category Class 11 Maths NCERT Solutions

Question 1 Find the union of each of the following pairs of sets :

(i) X = {1, 3, 5} Y = {1, 2, 3}

(i)  X = {1, 3, 5} Y = {1, 2, 3}

The union of X and Y is the set which consists of all the elements of X and Y

X ∪ Y= {1, 2, 3, 5}

(ii) A = [ a, e, i, o, u} B = {a, b, c}

(ii) A = {a, e, i, o, u} B = {a, b, c}

The union of A and B is the set which consists of all the elements of A and B

A∪ B = {a, b, c, e, i, o, u}

(iii) A = {x : x is a natural number and multiple of 3}

B = {x : x is a natural number less than 6}

(iii)  A = {x: x is a natural number and multiple of 3} = {3, 6, 9 …}

B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5, 6}

So the union of the pairs of set can be written as

A ∪ B = {1, 2, 4, 5, 3, 6, 9, 12 …}

Hence, A ∪ B = {x: x = 1, 2, 4, 5 or a multiple of 3}

(iv) A = {x : x is a natural number and 1 < x ≤6 }

B = {x : x is a natural number and 6 < x < 10 }

(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}

B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}

The union of A and B is the set which consists of all the elements of A and B

A∪ B = {2, 3, 4, 5, 6, 7, 8, 9}

Hence, A∪ B = {x: x ∈ N and 1 < x < 10}

(v) A = {1, 2, 3}, B = φ

(v) A = {1, 2, 3}, B = Φ

The union of A and B is the set which consists of all the elements of A and B

A ∪ B = {1, 2, 3}

Question 2 Let A = { a, b }, B = {a, b, c}. Is A ⊂ B ? What is A ∪ B ?

Answer A = {a, b} and B = {a, b, c}

To find if A ⊂ B and A ∪ B

A set A is said to be a subset of B if every element of A is also an element of B

It can be observed that A⊂ B 

A∪B = {a,b } ∪ {a,b,c}

∴A ∪ B = {a,b,c}

Question 3 If A and B are two sets such that A ⊂ B, then what is A ∪ B ?

Answer  If A and B are two sets such that

A ⊂ B, then A ∪ B = B.

Question 4) If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8 }  , D = { 7, 8, 9, 10 }; find

(i) A ∪ B                                (ii) A ∪ C                                (iii) B ∪ C

(iv) B ∪ D                              (v) A ∪ B ∪ C                           (vi) A ∪ B ∪ D

(vii) B ∪ C ∪ D

Answer

(i) A ∪ B = {1, 2, 3, 4, 5, 6}

(ii) A ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}

(iii) B ∪ C = {3, 4, 5, 6, 7, 8}

(iv) B ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}

(v) A ∪ B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8}

(vi) A ∪ B ∪ D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(vii) B ∪ C ∪ D = {3, 4, 5, 6, 7, 8, 9, 10}

Question 5 Find the intersection of each pair of sets of

(i) X = {1, 3, 5} Y = {1, 2, 3}

(i) X = {1, 3, 5}, Y = {1, 2, 3}

So the intersection of the given set can be written as

X ∩ Y = {1, 3}

(ii) A = {a, e, i, o, u} B = {a, b, c}

(ii) A = {a, e, i, o, u}, B = {a, b, c}

So the intersection of the given set can be written as

A ∩ B = {a}

(iii) A = {x: x is a natural number and multiple of 3}

B = {x: x is a natural number less than 6}

(iii) A = {x: x is a natural number and multiple of 3} = (3, 6, 9 …}

B = {x: x is a natural number less than 6} = {1, 2, 3, 4, 5}

So the intersection of the given set can be written as

A ∩ B = {3}

(iv) A = {x: x is a natural number and 1 < x ≤ 6}

B = {x: x is a natural number and 6 < x < 10}

(iv) A = {x: x is a natural number and 1 < x ≤ 6} = {2, 3, 4, 5, 6}

B = {x: x is a natural number and 6 < x < 10} = {7, 8, 9}

So the intersection of the given set can be written as

A ∩ B = Φ

(v) A = {1, 2, 3}, B = Φ

(v) A = {1, 2, 3}, B = Φ

So the intersection of the given set can be written as

A ∩ B = Φ

Question 6 If A = { 3, 5, 7, 9, 11 },                    B = {7, 9, 11, 13},                                     C = {11, 13, 15}                        and D = {15, 17}; find

(i) A ∩ B                                    (ii) B ∩ C                              (iii) A ∩ C ∩ D

(iv) A ∩ C                                  (v) B ∩ D                              (vi) A ∩ (B ∪ C)

(vii) A ∩ D                                 (viii) A ∩ (B ∪ D)                    (ix) ( A ∩ B ) ∩ ( B ∪ C )

(x) ( A ∪ D) ∩ ( B ∪ C)

Answer 

(i) A ∩ B = {7, 9, 11}

(ii) B ∩ C = {11, 13}

(iii) A ∩ C ∩ D = {A ∩ C} ∩ D = {11} ∩ {15, 17} = Φ

(iv) A ∩ C = {11}

(v) B ∩ D = Φ

(vi) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) = {7, 9, 11} ∪ {11} = {7, 9, 11}

(vii) A ∩ D = Φ

(viii) A ∩ (B ∪ D) = (A ∩ B) ∪ (A ∩ D) = {7, 9, 11} ∪ Φ = {7, 9, 11}

(ix) (A ∩ B) ∩ (B ∪ C) = {7, 9, 11} ∩ {7, 9, 11, 13, 15} = {7, 9, 11}

(x) (A ∪ D) ∩ (B ∪ C) = {3, 5, 7, 9, 11, 15, 17) ∩ {7, 9, 11, 13, 15} = {7, 9, 11, 15}

Question 7 If A = {x : x is a natural number },

B = {x : x is an even natural number}

C = {x : x is an odd natural number} and

D = {x : x is a prime number }, find

(i) A ∩ B                      (ii) A ∩ C                     (iii) A ∩ D

(iv) B ∩ C                     (v) B ∩ D                    (vi) C ∩ D 

Answer 

A = {x: x is a natural number} = {1, 2, 3, 4, 5 …}

B ={x: x is an even natural number} = {2, 4, 6, 8 …}

C = {x: x is an odd natural number} = {1, 3, 5, 7, 9 …}

D = {x: x is a prime number} = {2, 3, 5, 7 …}

(i) A ∩B = {x: x is a even natural number} = B

(ii) A ∩ C = {x: x is an odd natural number} = C

(iii) A ∩ D = {x: x is a prime number} = D

(iv) B ∩ C = Φ

(v) B ∩ D = {2}

(vi) C ∩ D = {x: x is odd prime number}

Question 8 Which of the following pairs of sets are disjoint

(i) {1, 2, 3, 4} and {x : x is a natural number and 4 ≤ x ≤ 6 }

(i) {1, 2, 3, 4} 

{x: x is a natural number and 4 ≤ x ≤ 6} = {4, 5, 6}

So we get

{1, 2, 3, 4} ∩ {4, 5, 6} = {4}

Hence, this pair of sets is not disjoint.

(ii) { a, e, i, o, u } and { c, d, e, f }

(ii) {a, e, i, o, u} ∩ (c, d, e, f} = {e}

Hence, {a, e, i, o, u} and (c, d, e, f} are not disjoint.

(iii) {x : x is an even integer } and {x : x is an odd integer}

(iii) {x: x is an even integer} ∩ {x: x is an odd integer} = Φ

Hence, this pair of sets is disjoint.

Question 9 If A = {3, 6, 9, 12, 15, 18, 21},            B = { 4, 8, 12, 16, 20 },

C = { 2, 4, 6, 8, 10, 12, 14, 16 },                           D = {5, 10, 15, 20 }; find

(i) A – B 

(i) A – B = {3, 6, 9, 15, 18, 21}

(ii) A – C   

(ii) A – C = {3, 9, 15, 18, 21}

(iii) A – D     

(iii) A – D = {3, 6, 9, 12, 18, 21}

(iv) B – A 

(iv) B – A = {4, 8, 16, 20}

(v) C – A       

(v) C – A = {2, 4, 8, 10, 14, 16}

(vi) D – A

(vi) D – A = {5, 10, 20}

(vii) B – C 

(vii) B – C = {20}

(viii) B – D 

(viii) B – D = {4, 8, 12, 16}

(ix) C – B   

(ix) C – B = {2, 6, 10, 14}

(x) D – B   

(x) D – B = {5, 10, 15}

(xi) C – D

(xi) C – D = {2, 4, 6, 8, 12, 14, 16}

(xii) D – C

(xii) D – C = {5, 15, 20}

Question 10 If X= { a, b, c, d } and Y = { f, b, d, g}, find

(i) X – Y   

(i) X – Y = {a, c}     

(ii) Y – X   

(ii) Y – X = {f, g} 

(iii) X ∩ Y

(iii) X ∩ Y = {b, d}

Question 11 If R is the set of real numbers and Q is the set of rational numbers, then what is R – Q?

Answer 

R – Set of real numbers

Q – Set of rational numbers

Hence, R – Q is a set of irrational numbers.

Question 12 State whether each of the following statement is true or false. Justify your answer.

(i) { 2, 3, 4, 5 } and { 3, 6} are disjoint sets.

(i) False

If 3 ∈ {2, 3, 4, 5}, 3 ∈ {3, 6}

So we get {2, 3, 4, 5} ∩ {3, 6} = {3}

(ii) { a, e, i, o, u } and { a, b, c, d }are disjoint sets.

(ii) False

If a ∈ {a, e, i, o, u}, a ∈ {a, b, c, d}

So we get {a, e, i, o, u} ∩ {a, b, c, d} = {a}

(iii) { 2, 6, 10, 14 } and { 3, 7, 11, 15} are disjoint sets.

(iii) True

Here {2, 6, 10, 14} ∩ {3, 7, 11, 15} = Φ

(iv) { 2, 6, 10 } and { 3, 7, 11} are disjoint sets.

(iv) True

Here {2, 6, 10} ∩ {3, 7, 11} = Φ

Filed Under: Class 11, Maths, NCERT Solutions

About Mrs Shilpi Nagpal

Author of this website, Mrs. Shilpi Nagpal is MSc (Hons, Chemistry) and BSc (Hons, Chemistry) from Delhi University, B.Ed. (I. P. University) and has many years of experience in teaching. She has started this educational website with the mindset of spreading free education to everyone.

Reader Interactions

Leave a Reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

  • Facebook
  • Pinterest
  • Twitter
  • YouTube

CATEGORIES

  • —— Class 6 Notes ——
  • —— Class 7 Notes ——
  • —— Class 8 Notes ——
  • —— Class 9 Notes ——
  • —— Class 10 Notes ——
  • —— NCERT Solutions ——

© 2016 - 2025 · Disclaimer · Privacy Policy · About Us · Contact Us